Thursday, January 26, 2017

9:40 AM

For a mapping $f:(X,J_X) \rightarrow (Y,J_Y)$, there are two concepts of continuity.

Continuity at $x_0 \in X$: $\forall V \in J_Y$ with $f(x_0) \in V$ $\exists U \in J_X$ with $x_0 \in U$, $U \subset f'(V)$ Continuity (everywhere): $\forall V \in J_Y$, $f'(V) \in J_X$.

Example. Dirichlet function $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \begin{cases} 0 & x \in \mathbb{R} \\ 1 & x \notin \mathbb{R} \end{cases}$

* it is discontinuous everywhere, if
f: (R, Jstd) -> (R, Jstd)

* it is continuous everywhere if

 $f: (\mathbb{R}, \mathcal{P}(\mathbb{R})) \longrightarrow (\mathbb{R}, any)$ so large to contain any f'(V).

* it is also continuous everywhere if $f:(\mathbb{R}, any) \longrightarrow (\mathbb{R}, \mathbb{R}, \mathbb{R})$

- F(x)= \$, f(R)=R, must in any topdayy

Fact. Continuity is not only about f, it is about the topologies

Thursday, January 26, 2017

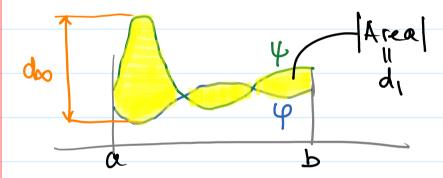
9:40 AM

Example.
$$X = \{ \text{continuous functions} \}$$

$$\{ [a_ib] \longrightarrow \mathbb{R} \}$$

and consider id: X -> X

- ① L_1 -topology J_1 by the metric $d_1(\varphi, \psi) = \int_0^b |\varphi(k) \psi(k)| dk$
- 2 Uniform Topology Joo by $d_{\infty}(\varphi, \psi) = \sup_{\mathbf{t} \in [a,b]} |\varphi(\mathbf{t}) \psi(\mathbf{t})|$



Fact. $id: (X, J_{\infty}) \longrightarrow (X, J_{i})$ is continuous

Idea of proof.

If
$$d\omega(\psi,\psi) < \delta = \frac{\varepsilon}{b-a}$$

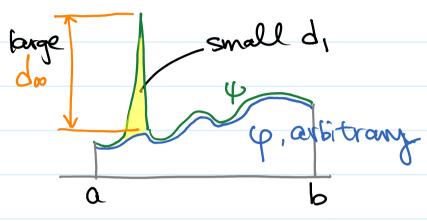
then $d_1(\psi,\psi) < \int_a^b \delta dt = \varepsilon$

What about

$$id: (X,J_1) \longrightarrow (X,J_\infty)?$$

Fact. id: $(X,J_1) \longrightarrow (X,J_{\infty})$ is not continuous at everywhere (i.e., $\forall \varphi$)

Idea.



Metric argument. For any YEX

Construct a function $\psi \in X$ which equals ψ everywhere except a "triangle" of base 1/2n and height 1. Then

 $d_1(\psi, \varphi) = \text{area} = \frac{1}{n} < 5$

but

d_∞(id4), id(4))

 $\sup_{t \in [a,b]} |\psi(t) - \varphi(t)| > 1 = \varepsilon$

Exercise. Argument in terms of topology

